Whakaoti mō x
x=-3
x=\frac{1}{7}\approx 0.142857143
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x^{2}+10x+8-3x^{2}=-10x+11
Tangohia te 3x^{2} mai i ngā taha e rua.
7x^{2}+10x+8=-10x+11
Pahekotia te 10x^{2} me -3x^{2}, ka 7x^{2}.
7x^{2}+10x+8+10x=11
Me tāpiri te 10x ki ngā taha e rua.
7x^{2}+20x+8=11
Pahekotia te 10x me 10x, ka 20x.
7x^{2}+20x+8-11=0
Tangohia te 11 mai i ngā taha e rua.
7x^{2}+20x-3=0
Tangohia te 11 i te 8, ka -3.
a+b=20 ab=7\left(-3\right)=-21
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 7x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,21 -3,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -21.
-1+21=20 -3+7=4
Tātaihia te tapeke mō ia takirua.
a=-1 b=21
Ko te otinga te takirua ka hoatu i te tapeke 20.
\left(7x^{2}-x\right)+\left(21x-3\right)
Tuhia anō te 7x^{2}+20x-3 hei \left(7x^{2}-x\right)+\left(21x-3\right).
x\left(7x-1\right)+3\left(7x-1\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(7x-1\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi 7x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{7} x=-3
Hei kimi otinga whārite, me whakaoti te 7x-1=0 me te x+3=0.
10x^{2}+10x+8-3x^{2}=-10x+11
Tangohia te 3x^{2} mai i ngā taha e rua.
7x^{2}+10x+8=-10x+11
Pahekotia te 10x^{2} me -3x^{2}, ka 7x^{2}.
7x^{2}+10x+8+10x=11
Me tāpiri te 10x ki ngā taha e rua.
7x^{2}+20x+8=11
Pahekotia te 10x me 10x, ka 20x.
7x^{2}+20x+8-11=0
Tangohia te 11 mai i ngā taha e rua.
7x^{2}+20x-3=0
Tangohia te 11 i te 8, ka -3.
x=\frac{-20±\sqrt{20^{2}-4\times 7\left(-3\right)}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, 20 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 7\left(-3\right)}}{2\times 7}
Pūrua 20.
x=\frac{-20±\sqrt{400-28\left(-3\right)}}{2\times 7}
Whakareatia -4 ki te 7.
x=\frac{-20±\sqrt{400+84}}{2\times 7}
Whakareatia -28 ki te -3.
x=\frac{-20±\sqrt{484}}{2\times 7}
Tāpiri 400 ki te 84.
x=\frac{-20±22}{2\times 7}
Tuhia te pūtakerua o te 484.
x=\frac{-20±22}{14}
Whakareatia 2 ki te 7.
x=\frac{2}{14}
Nā, me whakaoti te whārite x=\frac{-20±22}{14} ina he tāpiri te ±. Tāpiri -20 ki te 22.
x=\frac{1}{7}
Whakahekea te hautanga \frac{2}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{42}{14}
Nā, me whakaoti te whārite x=\frac{-20±22}{14} ina he tango te ±. Tango 22 mai i -20.
x=-3
Whakawehe -42 ki te 14.
x=\frac{1}{7} x=-3
Kua oti te whārite te whakatau.
10x^{2}+10x+8-3x^{2}=-10x+11
Tangohia te 3x^{2} mai i ngā taha e rua.
7x^{2}+10x+8=-10x+11
Pahekotia te 10x^{2} me -3x^{2}, ka 7x^{2}.
7x^{2}+10x+8+10x=11
Me tāpiri te 10x ki ngā taha e rua.
7x^{2}+20x+8=11
Pahekotia te 10x me 10x, ka 20x.
7x^{2}+20x=11-8
Tangohia te 8 mai i ngā taha e rua.
7x^{2}+20x=3
Tangohia te 8 i te 11, ka 3.
\frac{7x^{2}+20x}{7}=\frac{3}{7}
Whakawehea ngā taha e rua ki te 7.
x^{2}+\frac{20}{7}x=\frac{3}{7}
Mā te whakawehe ki te 7 ka wetekia te whakareanga ki te 7.
x^{2}+\frac{20}{7}x+\left(\frac{10}{7}\right)^{2}=\frac{3}{7}+\left(\frac{10}{7}\right)^{2}
Whakawehea te \frac{20}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{10}{7}. Nā, tāpiria te pūrua o te \frac{10}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{20}{7}x+\frac{100}{49}=\frac{3}{7}+\frac{100}{49}
Pūruatia \frac{10}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{20}{7}x+\frac{100}{49}=\frac{121}{49}
Tāpiri \frac{3}{7} ki te \frac{100}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{10}{7}\right)^{2}=\frac{121}{49}
Tauwehea x^{2}+\frac{20}{7}x+\frac{100}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{10}{7}\right)^{2}}=\sqrt{\frac{121}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{10}{7}=\frac{11}{7} x+\frac{10}{7}=-\frac{11}{7}
Whakarūnātia.
x=\frac{1}{7} x=-3
Me tango \frac{10}{7} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}