Aromātai
-5.625
Tauwehe
-5.625
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
10 \times 2.5 + ( \frac { 1 } { 2 } ) ( - 9.8 ) ( 2.5 ) ^ { 2 }
Tohaina
Kua tāruatia ki te papatopenga
25+\frac{1}{2}\left(-9.8\right)\times 2.5^{2}
Whakareatia te 10 ki te 2.5, ka 25.
25+\frac{1}{2}\left(-\frac{49}{5}\right)\times 2.5^{2}
Me tahuri ki tau ā-ira -9.8 ki te hautau -\frac{98}{10}. Whakahekea te hautanga -\frac{98}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
25+\frac{1\left(-49\right)}{2\times 5}\times 2.5^{2}
Me whakarea te \frac{1}{2} ki te -\frac{49}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
25+\frac{-49}{10}\times 2.5^{2}
Mahia ngā whakarea i roto i te hautanga \frac{1\left(-49\right)}{2\times 5}.
25-\frac{49}{10}\times 2.5^{2}
Ka taea te hautanga \frac{-49}{10} te tuhi anō ko -\frac{49}{10} mā te tango i te tohu tōraro.
25-\frac{49}{10}\times 6.25
Tātaihia te 2.5 mā te pū o 2, kia riro ko 6.25.
25-\frac{49}{10}\times \frac{25}{4}
Me tahuri ki tau ā-ira 6.25 ki te hautau \frac{625}{100}. Whakahekea te hautanga \frac{625}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
25+\frac{-49\times 25}{10\times 4}
Me whakarea te -\frac{49}{10} ki te \frac{25}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
25+\frac{-1225}{40}
Mahia ngā whakarea i roto i te hautanga \frac{-49\times 25}{10\times 4}.
25-\frac{245}{8}
Whakahekea te hautanga \frac{-1225}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{200}{8}-\frac{245}{8}
Me tahuri te 25 ki te hautau \frac{200}{8}.
\frac{200-245}{8}
Tā te mea he rite te tauraro o \frac{200}{8} me \frac{245}{8}, me tango rāua mā te tango i ō raua taurunga.
-\frac{45}{8}
Tangohia te 245 i te 200, ka -45.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}