Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

100=b^{2}\times 2
Whakareatia te 10 ki te 10, ka 100.
b^{2}\times 2=100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
b^{2}=\frac{100}{2}
Whakawehea ngā taha e rua ki te 2.
b^{2}=50
Whakawehea te 100 ki te 2, kia riro ko 50.
b=5\sqrt{2} b=-5\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
100=b^{2}\times 2
Whakareatia te 10 ki te 10, ka 100.
b^{2}\times 2=100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
b^{2}\times 2-100=0
Tangohia te 100 mai i ngā taha e rua.
2b^{2}-100=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
b=\frac{0±\sqrt{0^{2}-4\times 2\left(-100\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 0 mō b, me -100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times 2\left(-100\right)}}{2\times 2}
Pūrua 0.
b=\frac{0±\sqrt{-8\left(-100\right)}}{2\times 2}
Whakareatia -4 ki te 2.
b=\frac{0±\sqrt{800}}{2\times 2}
Whakareatia -8 ki te -100.
b=\frac{0±20\sqrt{2}}{2\times 2}
Tuhia te pūtakerua o te 800.
b=\frac{0±20\sqrt{2}}{4}
Whakareatia 2 ki te 2.
b=5\sqrt{2}
Nā, me whakaoti te whārite b=\frac{0±20\sqrt{2}}{4} ina he tāpiri te ±.
b=-5\sqrt{2}
Nā, me whakaoti te whārite b=\frac{0±20\sqrt{2}}{4} ina he tango te ±.
b=5\sqrt{2} b=-5\sqrt{2}
Kua oti te whārite te whakatau.