Aromātai
10
Tauwehe
2\times 5
Pātaitai
Trigonometry
5 raruraru e ōrite ana ki:
10 \times \cos 25 \times 002 \times ( 1 - e ^ { - 025 } )
Tohaina
Kua tāruatia ki te papatopenga
10\cos(0\times 0\times 2\left(1-e^{0\times 25}\right))
Whakareatia te 25 ki te 0, ka 0.
10\cos(0\times 2\left(1-e^{0\times 25}\right))
Whakareatia te 0 ki te 0, ka 0.
10\cos(0\left(1-e^{0\times 25}\right))
Whakareatia te 0 ki te 2, ka 0.
10\cos(0\left(1-e^{0}\right))
Whakareatia te 0 ki te 25, ka 0.
10\cos(0\left(1-1\right))
Tātaihia te e mā te pū o 0, kia riro ko 1.
10\cos(0\times 0)
Tangohia te 1 i te 1, ka 0.
10\cos(0)
Whakareatia te 0 ki te 0, ka 0.
10\times 1
Tīkina te uara \cos(0) mai i te ripanga uara pākoki.
10
Whakareatia te 10 ki te 1, ka 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}