Aromātai
6330
Tauwehe
2\times 3\times 5\times 211
Tohaina
Kua tāruatia ki te papatopenga
10\left(\left(8-3\right)^{4}+7^{0}+\sqrt[3]{216}\right)+\sqrt{100}
Whakareatia te 2 ki te 4, ka 8.
10\left(5^{4}+7^{0}+\sqrt[3]{216}\right)+\sqrt{100}
Tangohia te 3 i te 8, ka 5.
10\left(625+7^{0}+\sqrt[3]{216}\right)+\sqrt{100}
Tātaihia te 5 mā te pū o 4, kia riro ko 625.
10\left(625+1+\sqrt[3]{216}\right)+\sqrt{100}
Tātaihia te 7 mā te pū o 0, kia riro ko 1.
10\left(626+\sqrt[3]{216}\right)+\sqrt{100}
Tāpirihia te 625 ki te 1, ka 626.
10\left(626+6\right)+\sqrt{100}
Tātaitia te \sqrt[3]{216} kia tae ki 6.
10\times 632+\sqrt{100}
Tāpirihia te 626 ki te 6, ka 632.
6320+\sqrt{100}
Whakareatia te 10 ki te 632, ka 6320.
6320+10
Tātaitia te pūtakerua o 100 kia tae ki 10.
6330
Tāpirihia te 6320 ki te 10, ka 6330.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}