Whakaoti mō φ (complex solution)
\phi =\frac{2\pi n_{1}-\arctan(\frac{\sqrt{5}\left(\sqrt{5}+3\right)}{2})+arg(\frac{1}{5-10i-3\sqrt{5}})+2\pi }{2}
n_{1}\in \mathrm{Z}
Whakaoti mō φ
\phi =2\pi n_{1}+\arcsin(\frac{\sqrt{122\left(37-15\sqrt{5}\right)}}{122})\text{, }n_{1}\in \mathrm{Z}
\phi =2\pi n_{2}+\arcsin(\frac{\left(3\sqrt{122}-\sqrt{610}\right)\sqrt{3\sqrt{5}+17}}{244})+\pi \text{, }n_{2}\in \mathrm{Z}
Tohaina
Kua tāruatia ki te papatopenga
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}