Aromātai
\frac{43}{12}\approx 3.583333333
Tauwehe
\frac{43}{2 ^ {2} \cdot 3} = 3\frac{7}{12} = 3.5833333333333335
Tohaina
Kua tāruatia ki te papatopenga
\frac{60+5}{6}-\frac{7\times 2+1}{2}+\frac{1}{4}
Whakareatia te 10 ki te 6, ka 60.
\frac{65}{6}-\frac{7\times 2+1}{2}+\frac{1}{4}
Tāpirihia te 60 ki te 5, ka 65.
\frac{65}{6}-\frac{14+1}{2}+\frac{1}{4}
Whakareatia te 7 ki te 2, ka 14.
\frac{65}{6}-\frac{15}{2}+\frac{1}{4}
Tāpirihia te 14 ki te 1, ka 15.
\frac{65}{6}-\frac{45}{6}+\frac{1}{4}
Ko te maha noa iti rawa atu o 6 me 2 ko 6. Me tahuri \frac{65}{6} me \frac{15}{2} ki te hautau me te tautūnga 6.
\frac{65-45}{6}+\frac{1}{4}
Tā te mea he rite te tauraro o \frac{65}{6} me \frac{45}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{20}{6}+\frac{1}{4}
Tangohia te 45 i te 65, ka 20.
\frac{10}{3}+\frac{1}{4}
Whakahekea te hautanga \frac{20}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{40}{12}+\frac{3}{12}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{10}{3} me \frac{1}{4} ki te hautau me te tautūnga 12.
\frac{40+3}{12}
Tā te mea he rite te tauraro o \frac{40}{12} me \frac{3}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{43}{12}
Tāpirihia te 40 ki te 3, ka 43.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}