Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{10\times 3+2}{3}fe^{2}tby\times \frac{6\times 4+1}{4}
Whakareatia te e ki te e, ka e^{2}.
\frac{30+2}{3}fe^{2}tby\times \frac{6\times 4+1}{4}
Whakareatia te 10 ki te 3, ka 30.
\frac{32}{3}fe^{2}tby\times \frac{6\times 4+1}{4}
Tāpirihia te 30 ki te 2, ka 32.
\frac{32}{3}fe^{2}tby\times \frac{24+1}{4}
Whakareatia te 6 ki te 4, ka 24.
\frac{32}{3}fe^{2}tby\times \frac{25}{4}
Tāpirihia te 24 ki te 1, ka 25.
\frac{32\times 25}{3\times 4}fe^{2}tby
Me whakarea te \frac{32}{3} ki te \frac{25}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{800}{12}fe^{2}tby
Mahia ngā whakarea i roto i te hautanga \frac{32\times 25}{3\times 4}.
\frac{200}{3}fe^{2}tby
Whakahekea te hautanga \frac{800}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{10\times 3+2}{3}fe^{2}tby\times \frac{6\times 4+1}{4}
Whakareatia te e ki te e, ka e^{2}.
\frac{30+2}{3}fe^{2}tby\times \frac{6\times 4+1}{4}
Whakareatia te 10 ki te 3, ka 30.
\frac{32}{3}fe^{2}tby\times \frac{6\times 4+1}{4}
Tāpirihia te 30 ki te 2, ka 32.
\frac{32}{3}fe^{2}tby\times \frac{24+1}{4}
Whakareatia te 6 ki te 4, ka 24.
\frac{32}{3}fe^{2}tby\times \frac{25}{4}
Tāpirihia te 24 ki te 1, ka 25.
\frac{32\times 25}{3\times 4}fe^{2}tby
Me whakarea te \frac{32}{3} ki te \frac{25}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{800}{12}fe^{2}tby
Mahia ngā whakarea i roto i te hautanga \frac{32\times 25}{3\times 4}.
\frac{200}{3}fe^{2}tby
Whakahekea te hautanga \frac{800}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.