10 \frac { 2 } { 3 } \text { feet by } 6 \frac { 1 } { 4 }
Aromātai
\frac{200e^{2}bfty}{3}
Whakaroha
\frac{200e^{2}bfty}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{10\times 3+2}{3}fe^{2}tby\times \frac{6\times 4+1}{4}
Whakareatia te e ki te e, ka e^{2}.
\frac{30+2}{3}fe^{2}tby\times \frac{6\times 4+1}{4}
Whakareatia te 10 ki te 3, ka 30.
\frac{32}{3}fe^{2}tby\times \frac{6\times 4+1}{4}
Tāpirihia te 30 ki te 2, ka 32.
\frac{32}{3}fe^{2}tby\times \frac{24+1}{4}
Whakareatia te 6 ki te 4, ka 24.
\frac{32}{3}fe^{2}tby\times \frac{25}{4}
Tāpirihia te 24 ki te 1, ka 25.
\frac{32\times 25}{3\times 4}fe^{2}tby
Me whakarea te \frac{32}{3} ki te \frac{25}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{800}{12}fe^{2}tby
Mahia ngā whakarea i roto i te hautanga \frac{32\times 25}{3\times 4}.
\frac{200}{3}fe^{2}tby
Whakahekea te hautanga \frac{800}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{10\times 3+2}{3}fe^{2}tby\times \frac{6\times 4+1}{4}
Whakareatia te e ki te e, ka e^{2}.
\frac{30+2}{3}fe^{2}tby\times \frac{6\times 4+1}{4}
Whakareatia te 10 ki te 3, ka 30.
\frac{32}{3}fe^{2}tby\times \frac{6\times 4+1}{4}
Tāpirihia te 30 ki te 2, ka 32.
\frac{32}{3}fe^{2}tby\times \frac{24+1}{4}
Whakareatia te 6 ki te 4, ka 24.
\frac{32}{3}fe^{2}tby\times \frac{25}{4}
Tāpirihia te 24 ki te 1, ka 25.
\frac{32\times 25}{3\times 4}fe^{2}tby
Me whakarea te \frac{32}{3} ki te \frac{25}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{800}{12}fe^{2}tby
Mahia ngā whakarea i roto i te hautanga \frac{32\times 25}{3\times 4}.
\frac{200}{3}fe^{2}tby
Whakahekea te hautanga \frac{800}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}