Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

100=2x^{2}+x^{2}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
100=3x^{2}
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
3x^{2}=100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=\frac{100}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{10\sqrt{3}}{3} x=-\frac{10\sqrt{3}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
100=2x^{2}+x^{2}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
100=3x^{2}
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
3x^{2}=100
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x^{2}-100=0
Tangohia te 100 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-100\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-100\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-100\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{1200}}{2\times 3}
Whakareatia -12 ki te -100.
x=\frac{0±20\sqrt{3}}{2\times 3}
Tuhia te pūtakerua o te 1200.
x=\frac{0±20\sqrt{3}}{6}
Whakareatia 2 ki te 3.
x=\frac{10\sqrt{3}}{3}
Nā, me whakaoti te whārite x=\frac{0±20\sqrt{3}}{6} ina he tāpiri te ±.
x=-\frac{10\sqrt{3}}{3}
Nā, me whakaoti te whārite x=\frac{0±20\sqrt{3}}{6} ina he tango te ±.
x=\frac{10\sqrt{3}}{3} x=-\frac{10\sqrt{3}}{3}
Kua oti te whārite te whakatau.