Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
100=1110^{2}+1\text{ and }1110^{2}+1=0
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
100=1232100+1\text{ and }1110^{2}+1=0
Tātaihia te 1110 mā te pū o 2, kia riro ko 1232100.
100=1232101\text{ and }1110^{2}+1=0
Tāpirihia te 1232100 ki te 1, ka 1232101.
\text{false}\text{ and }1110^{2}+1=0
Whakatauritea te 100 me te 1232101.
\text{false}\text{ and }1232100+1=0
Tātaihia te 1110 mā te pū o 2, kia riro ko 1232100.
\text{false}\text{ and }1232101=0
Tāpirihia te 1232100 ki te 1, ka 1232101.
\text{false}\text{ and }\text{false}
Whakatauritea te 1232101 me te 0.
\text{false}
Ko te kōmititanga tōrunga o \text{false} me \text{false} ko \text{false}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}