Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

100+x^{2}=8^{2}-\left(12-x\right)^{2}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
100+x^{2}=64-\left(12-x\right)^{2}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
100+x^{2}=64-\left(144-24x+x^{2}\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(12-x\right)^{2}.
100+x^{2}=64-144+24x-x^{2}
Hei kimi i te tauaro o 144-24x+x^{2}, kimihia te tauaro o ia taurangi.
100+x^{2}=-80+24x-x^{2}
Tangohia te 144 i te 64, ka -80.
100+x^{2}-\left(-80\right)=24x-x^{2}
Tangohia te -80 mai i ngā taha e rua.
100+x^{2}+80=24x-x^{2}
Ko te tauaro o -80 ko 80.
100+x^{2}+80-24x=-x^{2}
Tangohia te 24x mai i ngā taha e rua.
180+x^{2}-24x=-x^{2}
Tāpirihia te 100 ki te 80, ka 180.
180+x^{2}-24x+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
180+2x^{2}-24x=0
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-24x+180=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 2\times 180}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -24 mō b, me 180 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 2\times 180}}{2\times 2}
Pūrua -24.
x=\frac{-\left(-24\right)±\sqrt{576-8\times 180}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-24\right)±\sqrt{576-1440}}{2\times 2}
Whakareatia -8 ki te 180.
x=\frac{-\left(-24\right)±\sqrt{-864}}{2\times 2}
Tāpiri 576 ki te -1440.
x=\frac{-\left(-24\right)±12\sqrt{6}i}{2\times 2}
Tuhia te pūtakerua o te -864.
x=\frac{24±12\sqrt{6}i}{2\times 2}
Ko te tauaro o -24 ko 24.
x=\frac{24±12\sqrt{6}i}{4}
Whakareatia 2 ki te 2.
x=\frac{24+12\sqrt{6}i}{4}
Nā, me whakaoti te whārite x=\frac{24±12\sqrt{6}i}{4} ina he tāpiri te ±. Tāpiri 24 ki te 12i\sqrt{6}.
x=6+3\sqrt{6}i
Whakawehe 24+12i\sqrt{6} ki te 4.
x=\frac{-12\sqrt{6}i+24}{4}
Nā, me whakaoti te whārite x=\frac{24±12\sqrt{6}i}{4} ina he tango te ±. Tango 12i\sqrt{6} mai i 24.
x=-3\sqrt{6}i+6
Whakawehe 24-12i\sqrt{6} ki te 4.
x=6+3\sqrt{6}i x=-3\sqrt{6}i+6
Kua oti te whārite te whakatau.
100+x^{2}=8^{2}-\left(12-x\right)^{2}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
100+x^{2}=64-\left(12-x\right)^{2}
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
100+x^{2}=64-\left(144-24x+x^{2}\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(12-x\right)^{2}.
100+x^{2}=64-144+24x-x^{2}
Hei kimi i te tauaro o 144-24x+x^{2}, kimihia te tauaro o ia taurangi.
100+x^{2}=-80+24x-x^{2}
Tangohia te 144 i te 64, ka -80.
100+x^{2}-24x=-80-x^{2}
Tangohia te 24x mai i ngā taha e rua.
100+x^{2}-24x+x^{2}=-80
Me tāpiri te x^{2} ki ngā taha e rua.
100+2x^{2}-24x=-80
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}-24x=-80-100
Tangohia te 100 mai i ngā taha e rua.
2x^{2}-24x=-180
Tangohia te 100 i te -80, ka -180.
\frac{2x^{2}-24x}{2}=-\frac{180}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{24}{2}\right)x=-\frac{180}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-12x=-\frac{180}{2}
Whakawehe -24 ki te 2.
x^{2}-12x=-90
Whakawehe -180 ki te 2.
x^{2}-12x+\left(-6\right)^{2}=-90+\left(-6\right)^{2}
Whakawehea te -12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -6. Nā, tāpiria te pūrua o te -6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-12x+36=-90+36
Pūrua -6.
x^{2}-12x+36=-54
Tāpiri -90 ki te 36.
\left(x-6\right)^{2}=-54
Tauwehea x^{2}-12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{-54}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-6=3\sqrt{6}i x-6=-3\sqrt{6}i
Whakarūnātia.
x=6+3\sqrt{6}i x=-3\sqrt{6}i+6
Me tāpiri 6 ki ngā taha e rua o te whārite.