Whakaoti mō c
c=10\sqrt{2}\approx 14.142135624
c=-10\sqrt{2}\approx -14.142135624
Tohaina
Kua tāruatia ki te papatopenga
100+10^{2}=c^{2}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
100+100=c^{2}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
200=c^{2}
Tāpirihia te 100 ki te 100, ka 200.
c^{2}=200
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
c=10\sqrt{2} c=-10\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
100+10^{2}=c^{2}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
100+100=c^{2}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
200=c^{2}
Tāpirihia te 100 ki te 100, ka 200.
c^{2}=200
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
c^{2}-200=0
Tangohia te 200 mai i ngā taha e rua.
c=\frac{0±\sqrt{0^{2}-4\left(-200\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -200 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\left(-200\right)}}{2}
Pūrua 0.
c=\frac{0±\sqrt{800}}{2}
Whakareatia -4 ki te -200.
c=\frac{0±20\sqrt{2}}{2}
Tuhia te pūtakerua o te 800.
c=10\sqrt{2}
Nā, me whakaoti te whārite c=\frac{0±20\sqrt{2}}{2} ina he tāpiri te ±.
c=-10\sqrt{2}
Nā, me whakaoti te whārite c=\frac{0±20\sqrt{2}}{2} ina he tango te ±.
c=10\sqrt{2} c=-10\sqrt{2}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}