10 + 3 ( 6 \% 2 ) - 2
Aromātai
\frac{209}{25}=8.36
Tauwehe
\frac{11 \cdot 19}{5 ^ {2}} = 8\frac{9}{25} = 8.36
Tohaina
Kua tāruatia ki te papatopenga
10+3\times \frac{3}{50}\times 2-2
Whakahekea te hautanga \frac{6}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
10+\frac{3\times 3}{50}\times 2-2
Tuhia te 3\times \frac{3}{50} hei hautanga kotahi.
10+\frac{9}{50}\times 2-2
Whakareatia te 3 ki te 3, ka 9.
10+\frac{9\times 2}{50}-2
Tuhia te \frac{9}{50}\times 2 hei hautanga kotahi.
10+\frac{18}{50}-2
Whakareatia te 9 ki te 2, ka 18.
10+\frac{9}{25}-2
Whakahekea te hautanga \frac{18}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{250}{25}+\frac{9}{25}-2
Me tahuri te 10 ki te hautau \frac{250}{25}.
\frac{250+9}{25}-2
Tā te mea he rite te tauraro o \frac{250}{25} me \frac{9}{25}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{259}{25}-2
Tāpirihia te 250 ki te 9, ka 259.
\frac{259}{25}-\frac{50}{25}
Me tahuri te 2 ki te hautau \frac{50}{25}.
\frac{259-50}{25}
Tā te mea he rite te tauraro o \frac{259}{25} me \frac{50}{25}, me tango rāua mā te tango i ō raua taurunga.
\frac{209}{25}
Tangohia te 50 i te 259, ka 209.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}