Whakaoti mō x
x=\frac{8363}{801000}\approx 0.010440699
Graph
Tohaina
Kua tāruatia ki te papatopenga
1.6726\times 10^{-27}\times 10^{13}=1.602\times 10^{-19}\times 10^{7}x
Me whakakore te 1.9 ki ngā taha e rua.
1.6726\times 10^{-14}=1.602\times 10^{-19}\times 10^{7}x
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -27 me te 13 kia riro ai te -14.
1.6726\times 10^{-14}=1.602\times 10^{-12}x
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -19 me te 7 kia riro ai te -12.
1.6726\times \frac{1}{100000000000000}=1.602\times 10^{-12}x
Tātaihia te 10 mā te pū o -14, kia riro ko \frac{1}{100000000000000}.
\frac{8363}{500000000000000000}=1.602\times 10^{-12}x
Whakareatia te 1.6726 ki te \frac{1}{100000000000000}, ka \frac{8363}{500000000000000000}.
\frac{8363}{500000000000000000}=1.602\times \frac{1}{1000000000000}x
Tātaihia te 10 mā te pū o -12, kia riro ko \frac{1}{1000000000000}.
\frac{8363}{500000000000000000}=\frac{801}{500000000000000}x
Whakareatia te 1.602 ki te \frac{1}{1000000000000}, ka \frac{801}{500000000000000}.
\frac{801}{500000000000000}x=\frac{8363}{500000000000000000}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{8363}{500000000000000000}\times \frac{500000000000000}{801}
Me whakarea ngā taha e rua ki te \frac{500000000000000}{801}, te tau utu o \frac{801}{500000000000000}.
x=\frac{8363}{801000}
Whakareatia te \frac{8363}{500000000000000000} ki te \frac{500000000000000}{801}, ka \frac{8363}{801000}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}