Whakaoti mō y
y=\frac{1}{7}-z
Whakaoti mō z
z=\frac{1}{7}-y
Tohaina
Kua tāruatia ki te papatopenga
\frac{1.6}{22.4}=\frac{y+z}{2}
Whakawehea ngā taha e rua ki te 22.4.
\frac{16}{224}=\frac{y+z}{2}
Whakarohaina te \frac{1.6}{22.4} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{1}{14}=\frac{y+z}{2}
Whakahekea te hautanga \frac{16}{224} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
\frac{1}{14}\times 2=y+z
Me whakarea ngā taha e rua ki te 2.
\frac{1}{7}=y+z
Whakareatia te \frac{1}{14} ki te 2, ka \frac{1}{7}.
y+z=\frac{1}{7}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y=\frac{1}{7}-z
Tangohia te z mai i ngā taha e rua.
\frac{1.6}{22.4}=\frac{y+z}{2}
Whakawehea ngā taha e rua ki te 22.4.
\frac{16}{224}=\frac{y+z}{2}
Whakarohaina te \frac{1.6}{22.4} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{1}{14}=\frac{y+z}{2}
Whakahekea te hautanga \frac{16}{224} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
\frac{1}{14}\times 2=y+z
Me whakarea ngā taha e rua ki te 2.
\frac{1}{7}=y+z
Whakareatia te \frac{1}{14} ki te 2, ka \frac{1}{7}.
y+z=\frac{1}{7}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
z=\frac{1}{7}-y
Tangohia te y mai i ngā taha e rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}