Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Whakaoti mō z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1.6}{22.4}=\frac{y+z}{2}
Whakawehea ngā taha e rua ki te 22.4.
\frac{16}{224}=\frac{y+z}{2}
Whakarohaina te \frac{1.6}{22.4} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{1}{14}=\frac{y+z}{2}
Whakahekea te hautanga \frac{16}{224} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
\frac{1}{14}\times 2=y+z
Me whakarea ngā taha e rua ki te 2.
\frac{1}{7}=y+z
Whakareatia te \frac{1}{14} ki te 2, ka \frac{1}{7}.
y+z=\frac{1}{7}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
y=\frac{1}{7}-z
Tangohia te z mai i ngā taha e rua.
\frac{1.6}{22.4}=\frac{y+z}{2}
Whakawehea ngā taha e rua ki te 22.4.
\frac{16}{224}=\frac{y+z}{2}
Whakarohaina te \frac{1.6}{22.4} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{1}{14}=\frac{y+z}{2}
Whakahekea te hautanga \frac{16}{224} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
\frac{1}{14}\times 2=y+z
Me whakarea ngā taha e rua ki te 2.
\frac{1}{7}=y+z
Whakareatia te \frac{1}{14} ki te 2, ka \frac{1}{7}.
y+z=\frac{1}{7}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
z=\frac{1}{7}-y
Tangohia te y mai i ngā taha e rua.