Whakaoti mō x
x=\frac{448-4y}{3}
Whakaoti mō y
y=-\frac{3x}{4}+112
Graph
Tohaina
Kua tāruatia ki te papatopenga
1.5x=224-2y
Tangohia te 2y mai i ngā taha e rua.
\frac{1.5x}{1.5}=\frac{224-2y}{1.5}
Whakawehea ngā taha e rua o te whārite ki te 1.5, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{224-2y}{1.5}
Mā te whakawehe ki te 1.5 ka wetekia te whakareanga ki te 1.5.
x=\frac{448-4y}{3}
Whakawehe 224-2y ki te 1.5 mā te whakarea 224-2y ki te tau huripoki o 1.5.
2y=224-1.5x
Tangohia te 1.5x mai i ngā taha e rua.
2y=-\frac{3x}{2}+224
He hanga arowhānui tō te whārite.
\frac{2y}{2}=\frac{-\frac{3x}{2}+224}{2}
Whakawehea ngā taha e rua ki te 2.
y=\frac{-\frac{3x}{2}+224}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
y=-\frac{3x}{4}+112
Whakawehe 224-\frac{3x}{2} ki te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}