Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1.5x^{2}=7560
Whakareatia te x ki te x, ka x^{2}.
x^{2}=\frac{7560}{1.5}
Whakawehea ngā taha e rua ki te 1.5.
x^{2}=\frac{75600}{15}
Whakarohaina te \frac{7560}{1.5} mā te whakarea i te taurunga me te tauraro ki te 10.
x^{2}=5040
Whakawehea te 75600 ki te 15, kia riro ko 5040.
x=12\sqrt{35} x=-12\sqrt{35}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
1.5x^{2}=7560
Whakareatia te x ki te x, ka x^{2}.
1.5x^{2}-7560=0
Tangohia te 7560 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 1.5\left(-7560\right)}}{2\times 1.5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1.5 mō a, 0 mō b, me -7560 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 1.5\left(-7560\right)}}{2\times 1.5}
Pūrua 0.
x=\frac{0±\sqrt{-6\left(-7560\right)}}{2\times 1.5}
Whakareatia -4 ki te 1.5.
x=\frac{0±\sqrt{45360}}{2\times 1.5}
Whakareatia -6 ki te -7560.
x=\frac{0±36\sqrt{35}}{2\times 1.5}
Tuhia te pūtakerua o te 45360.
x=\frac{0±36\sqrt{35}}{3}
Whakareatia 2 ki te 1.5.
x=12\sqrt{35}
Nā, me whakaoti te whārite x=\frac{0±36\sqrt{35}}{3} ina he tāpiri te ±.
x=-12\sqrt{35}
Nā, me whakaoti te whārite x=\frac{0±36\sqrt{35}}{3} ina he tango te ±.
x=12\sqrt{35} x=-12\sqrt{35}
Kua oti te whārite te whakatau.