Whakaoti mō x
x=10
Graph
Tohaina
Kua tāruatia ki te papatopenga
30-1.5x+1.2\left(30+1.5x\right)=69
Whakamahia te āhuatanga tohatoha hei whakarea te 1.5 ki te 20-x.
30-1.5x+36+1.8x=69
Whakamahia te āhuatanga tohatoha hei whakarea te 1.2 ki te 30+1.5x.
66-1.5x+1.8x=69
Tāpirihia te 30 ki te 36, ka 66.
66+0.3x=69
Pahekotia te -1.5x me 1.8x, ka 0.3x.
0.3x=69-66
Tangohia te 66 mai i ngā taha e rua.
0.3x=3
Tangohia te 66 i te 69, ka 3.
x=\frac{3}{0.3}
Whakawehea ngā taha e rua ki te 0.3.
x=\frac{30}{3}
Whakarohaina te \frac{3}{0.3} mā te whakarea i te taurunga me te tauraro ki te 10.
x=10
Whakawehea te 30 ki te 3, kia riro ko 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}