Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1.5\times 10^{-5}\left(-x+1\right)=x^{2}
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -x+1.
1.5\times \frac{1}{100000}\left(-x+1\right)=x^{2}
Tātaihia te 10 mā te pū o -5, kia riro ko \frac{1}{100000}.
\frac{3}{200000}\left(-x+1\right)=x^{2}
Whakareatia te 1.5 ki te \frac{1}{100000}, ka \frac{3}{200000}.
-\frac{3}{200000}x+\frac{3}{200000}=x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{200000} ki te -x+1.
-\frac{3}{200000}x+\frac{3}{200000}-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}-\frac{3}{200000}x+\frac{3}{200000}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\left(-\frac{3}{200000}\right)^{2}-4\left(-1\right)\times \frac{3}{200000}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -\frac{3}{200000} mō b, me \frac{3}{200000} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{9}{40000000000}-4\left(-1\right)\times \frac{3}{200000}}}{2\left(-1\right)}
Pūruatia -\frac{3}{200000} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{9}{40000000000}+4\times \frac{3}{200000}}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{9}{40000000000}+\frac{3}{50000}}}{2\left(-1\right)}
Whakareatia 4 ki te \frac{3}{200000}.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{2400009}{40000000000}}}{2\left(-1\right)}
Tāpiri \frac{9}{40000000000} ki te \frac{3}{50000} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\left(-\frac{3}{200000}\right)±\frac{\sqrt{2400009}}{200000}}{2\left(-1\right)}
Tuhia te pūtakerua o te \frac{2400009}{40000000000}.
x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{2\left(-1\right)}
Ko te tauaro o -\frac{3}{200000} ko \frac{3}{200000}.
x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{-2}
Whakareatia 2 ki te -1.
x=\frac{\sqrt{2400009}+3}{-2\times 200000}
Nā, me whakaoti te whārite x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{-2} ina he tāpiri te ±. Tāpiri \frac{3}{200000} ki te \frac{\sqrt{2400009}}{200000}.
x=\frac{-\sqrt{2400009}-3}{400000}
Whakawehe \frac{3+\sqrt{2400009}}{200000} ki te -2.
x=\frac{3-\sqrt{2400009}}{-2\times 200000}
Nā, me whakaoti te whārite x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{-2} ina he tango te ±. Tango \frac{\sqrt{2400009}}{200000} mai i \frac{3}{200000}.
x=\frac{\sqrt{2400009}-3}{400000}
Whakawehe \frac{3-\sqrt{2400009}}{200000} ki te -2.
x=\frac{-\sqrt{2400009}-3}{400000} x=\frac{\sqrt{2400009}-3}{400000}
Kua oti te whārite te whakatau.
1.5\times 10^{-5}\left(-x+1\right)=x^{2}
Tē taea kia ōrite te tāupe x ki 1 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te -x+1.
1.5\times \frac{1}{100000}\left(-x+1\right)=x^{2}
Tātaihia te 10 mā te pū o -5, kia riro ko \frac{1}{100000}.
\frac{3}{200000}\left(-x+1\right)=x^{2}
Whakareatia te 1.5 ki te \frac{1}{100000}, ka \frac{3}{200000}.
-\frac{3}{200000}x+\frac{3}{200000}=x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{200000} ki te -x+1.
-\frac{3}{200000}x+\frac{3}{200000}-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-\frac{3}{200000}x-x^{2}=-\frac{3}{200000}
Tangohia te \frac{3}{200000} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-x^{2}-\frac{3}{200000}x=-\frac{3}{200000}
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-\frac{3}{200000}x}{-1}=-\frac{\frac{3}{200000}}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{\frac{3}{200000}}{-1}\right)x=-\frac{\frac{3}{200000}}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+\frac{3}{200000}x=-\frac{\frac{3}{200000}}{-1}
Whakawehe -\frac{3}{200000} ki te -1.
x^{2}+\frac{3}{200000}x=\frac{3}{200000}
Whakawehe -\frac{3}{200000} ki te -1.
x^{2}+\frac{3}{200000}x+\left(\frac{3}{400000}\right)^{2}=\frac{3}{200000}+\left(\frac{3}{400000}\right)^{2}
Whakawehea te \frac{3}{200000}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{400000}. Nā, tāpiria te pūrua o te \frac{3}{400000} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{200000}x+\frac{9}{160000000000}=\frac{3}{200000}+\frac{9}{160000000000}
Pūruatia \frac{3}{400000} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{200000}x+\frac{9}{160000000000}=\frac{2400009}{160000000000}
Tāpiri \frac{3}{200000} ki te \frac{9}{160000000000} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{400000}\right)^{2}=\frac{2400009}{160000000000}
Tauwehea x^{2}+\frac{3}{200000}x+\frac{9}{160000000000}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{400000}\right)^{2}}=\sqrt{\frac{2400009}{160000000000}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{400000}=\frac{\sqrt{2400009}}{400000} x+\frac{3}{400000}=-\frac{\sqrt{2400009}}{400000}
Whakarūnātia.
x=\frac{\sqrt{2400009}-3}{400000} x=\frac{-\sqrt{2400009}-3}{400000}
Me tango \frac{3}{400000} mai i ngā taha e rua o te whārite.