1.5 \left( 1.- \frac{ 8 }{ 3 } x \right) = 2.4
Whakaoti mō x
x=-0.225
Graph
Tohaina
Kua tāruatia ki te papatopenga
1-\frac{8}{3}x=\frac{2.4}{1.5}
Whakawehea ngā taha e rua ki te 1.5.
1-\frac{8}{3}x=\frac{24}{15}
Whakarohaina te \frac{2.4}{1.5} mā te whakarea i te taurunga me te tauraro ki te 10.
1-\frac{8}{3}x=\frac{8}{5}
Whakahekea te hautanga \frac{24}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
-\frac{8}{3}x=\frac{8}{5}-1
Tangohia te 1 mai i ngā taha e rua.
-\frac{8}{3}x=\frac{8}{5}-\frac{5}{5}
Me tahuri te 1 ki te hautau \frac{5}{5}.
-\frac{8}{3}x=\frac{8-5}{5}
Tā te mea he rite te tauraro o \frac{8}{5} me \frac{5}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{8}{3}x=\frac{3}{5}
Tangohia te 5 i te 8, ka 3.
x=\frac{3}{5}\left(-\frac{3}{8}\right)
Me whakarea ngā taha e rua ki te -\frac{3}{8}, te tau utu o -\frac{8}{3}.
x=\frac{3\left(-3\right)}{5\times 8}
Me whakarea te \frac{3}{5} ki te -\frac{3}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{-9}{40}
Mahia ngā whakarea i roto i te hautanga \frac{3\left(-3\right)}{5\times 8}.
x=-\frac{9}{40}
Ka taea te hautanga \frac{-9}{40} te tuhi anō ko -\frac{9}{40} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}