Whakaoti mō x
x=\frac{3y}{5}+2.7
Whakaoti mō y
y=\frac{5x}{3}-4.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-5.4=1.2y
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x=1.2y+5.4
Me tāpiri te 5.4 ki ngā taha e rua.
2x=\frac{6y+27}{5}
He hanga arowhānui tō te whārite.
\frac{2x}{2}=\frac{6y+27}{2\times 5}
Whakawehea ngā taha e rua ki te 2.
x=\frac{6y+27}{2\times 5}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x=\frac{3y}{5}+\frac{27}{10}
Whakawehe \frac{6y+27}{5} ki te 2.
1.2y=2x-5.4
He hanga arowhānui tō te whārite.
\frac{1.2y}{1.2}=\frac{2x-5.4}{1.2}
Whakawehea ngā taha e rua o te whārite ki te 1.2, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=\frac{2x-5.4}{1.2}
Mā te whakawehe ki te 1.2 ka wetekia te whakareanga ki te 1.2.
y=\frac{5x}{3}-\frac{9}{2}
Whakawehe 2x-5.4 ki te 1.2 mā te whakarea 2x-5.4 ki te tau huripoki o 1.2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}