Aromātai
0.2
Tauwehe
\frac{1}{5} = 0.2
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
1.25 \times 1 \frac { 1 } { 25 } \times \frac { 2 } { 13 }
Tohaina
Kua tāruatia ki te papatopenga
1.25\times \frac{25+1}{25}\times \frac{2}{13}
Whakareatia te 1 ki te 25, ka 25.
1.25\times \frac{26}{25}\times \frac{2}{13}
Tāpirihia te 25 ki te 1, ka 26.
\frac{5}{4}\times \frac{26}{25}\times \frac{2}{13}
Me tahuri ki tau ā-ira 1.25 ki te hautau \frac{125}{100}. Whakahekea te hautanga \frac{125}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{5\times 26}{4\times 25}\times \frac{2}{13}
Me whakarea te \frac{5}{4} ki te \frac{26}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{130}{100}\times \frac{2}{13}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 26}{4\times 25}.
\frac{13}{10}\times \frac{2}{13}
Whakahekea te hautanga \frac{130}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{13\times 2}{10\times 13}
Me whakarea te \frac{13}{10} ki te \frac{2}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2}{10}
Me whakakore tahi te 13 i te taurunga me te tauraro.
\frac{1}{5}
Whakahekea te hautanga \frac{2}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}