1.24 \times 4.5 \% +3.5 \% =
Aromātai
0.0908
Tauwehe
\frac{227}{2 ^ {2} \cdot 5 ^ {4}} = 0.0908
Tohaina
Kua tāruatia ki te papatopenga
1.24\times \frac{45}{1000}+\frac{3.5}{100}
Whakarohaina te \frac{4.5}{100} mā te whakarea i te taurunga me te tauraro ki te 10.
1.24\times \frac{9}{200}+\frac{3.5}{100}
Whakahekea te hautanga \frac{45}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{31}{25}\times \frac{9}{200}+\frac{3.5}{100}
Me tahuri ki tau ā-ira 1.24 ki te hautau \frac{124}{100}. Whakahekea te hautanga \frac{124}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{31\times 9}{25\times 200}+\frac{3.5}{100}
Me whakarea te \frac{31}{25} ki te \frac{9}{200} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{279}{5000}+\frac{3.5}{100}
Mahia ngā whakarea i roto i te hautanga \frac{31\times 9}{25\times 200}.
\frac{279}{5000}+\frac{35}{1000}
Whakarohaina te \frac{3.5}{100} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{279}{5000}+\frac{7}{200}
Whakahekea te hautanga \frac{35}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{279}{5000}+\frac{175}{5000}
Ko te maha noa iti rawa atu o 5000 me 200 ko 5000. Me tahuri \frac{279}{5000} me \frac{7}{200} ki te hautau me te tautūnga 5000.
\frac{279+175}{5000}
Tā te mea he rite te tauraro o \frac{279}{5000} me \frac{175}{5000}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{454}{5000}
Tāpirihia te 279 ki te 175, ka 454.
\frac{227}{2500}
Whakahekea te hautanga \frac{454}{5000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}