Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
1.2-\frac{7.5}{0.6}=0.2
Whakareatia te 0.75 ki te 10, ka 7.5.
1.2-\frac{75}{6}=0.2
Whakarohaina te \frac{7.5}{0.6} mā te whakarea i te taurunga me te tauraro ki te 10.
1.2-\frac{25}{2}=0.2
Whakahekea te hautanga \frac{75}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{6}{5}-\frac{25}{2}=0.2
Me tahuri ki tau ā-ira 1.2 ki te hautau \frac{12}{10}. Whakahekea te hautanga \frac{12}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{12}{10}-\frac{125}{10}=0.2
Ko te maha noa iti rawa atu o 5 me 2 ko 10. Me tahuri \frac{6}{5} me \frac{25}{2} ki te hautau me te tautūnga 10.
\frac{12-125}{10}=0.2
Tā te mea he rite te tauraro o \frac{12}{10} me \frac{125}{10}, me tango rāua mā te tango i ō raua taurunga.
-\frac{113}{10}=0.2
Tangohia te 125 i te 12, ka -113.
-\frac{113}{10}=\frac{1}{5}
Me tahuri ki tau ā-ira 0.2 ki te hautau \frac{2}{10}. Whakahekea te hautanga \frac{2}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{113}{10}=\frac{2}{10}
Ko te maha noa iti rawa atu o 10 me 5 ko 10. Me tahuri -\frac{113}{10} me \frac{1}{5} ki te hautau me te tautūnga 10.
\text{false}
Whakatauritea te -\frac{113}{10} me te \frac{2}{10}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}