Aromātai
2.86
Tauwehe
\frac{11 \cdot 13}{2 \cdot 5 ^ {2}} = 2\frac{43}{50} = 2.86
Tohaina
Kua tāruatia ki te papatopenga
2.75+\frac{1.1^{2}}{11}
Whakareatia te 1.1 ki te 2.5, ka 2.75.
2.75+\frac{1.21}{11}
Tātaihia te 1.1 mā te pū o 2, kia riro ko 1.21.
2.75+\frac{121}{1100}
Whakarohaina te \frac{1.21}{11} mā te whakarea i te taurunga me te tauraro ki te 100.
2.75+\frac{11}{100}
Whakahekea te hautanga \frac{121}{1100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 11.
\frac{11}{4}+\frac{11}{100}
Me tahuri ki tau ā-ira 2.75 ki te hautau \frac{275}{100}. Whakahekea te hautanga \frac{275}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{275}{100}+\frac{11}{100}
Ko te maha noa iti rawa atu o 4 me 100 ko 100. Me tahuri \frac{11}{4} me \frac{11}{100} ki te hautau me te tautūnga 100.
\frac{275+11}{100}
Tā te mea he rite te tauraro o \frac{275}{100} me \frac{11}{100}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{286}{100}
Tāpirihia te 275 ki te 11, ka 286.
\frac{143}{50}
Whakahekea te hautanga \frac{286}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}