Tīpoka ki ngā ihirangi matua
Whakaoti mō h
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

h^{2}=1.024
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
h=\frac{8\sqrt{10}}{25} h=-\frac{8\sqrt{10}}{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
h^{2}=1.024
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
h^{2}-1.024=0
Tangohia te 1.024 mai i ngā taha e rua.
h=\frac{0±\sqrt{0^{2}-4\left(-1.024\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -1.024 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{0±\sqrt{-4\left(-1.024\right)}}{2}
Pūrua 0.
h=\frac{0±\sqrt{4.096}}{2}
Whakareatia -4 ki te -1.024.
h=\frac{0±\frac{16\sqrt{10}}{25}}{2}
Tuhia te pūtakerua o te 4.096.
h=\frac{8\sqrt{10}}{25}
Nā, me whakaoti te whārite h=\frac{0±\frac{16\sqrt{10}}{25}}{2} ina he tāpiri te ±.
h=-\frac{8\sqrt{10}}{25}
Nā, me whakaoti te whārite h=\frac{0±\frac{16\sqrt{10}}{25}}{2} ina he tango te ±.
h=\frac{8\sqrt{10}}{25} h=-\frac{8\sqrt{10}}{25}
Kua oti te whārite te whakatau.