Tauwehe
-4\left(x-\frac{1-\sqrt{161}}{8}\right)\left(x-\frac{\sqrt{161}+1}{8}\right)
Aromātai
10+x-4x^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
factor(10-4x^{2}+x)
Tāpirihia te 1 ki te 9, ka 10.
-4x^{2}+x+10=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\left(-4\right)\times 10}}{2\left(-4\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1-4\left(-4\right)\times 10}}{2\left(-4\right)}
Pūrua 1.
x=\frac{-1±\sqrt{1+16\times 10}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
x=\frac{-1±\sqrt{1+160}}{2\left(-4\right)}
Whakareatia 16 ki te 10.
x=\frac{-1±\sqrt{161}}{2\left(-4\right)}
Tāpiri 1 ki te 160.
x=\frac{-1±\sqrt{161}}{-8}
Whakareatia 2 ki te -4.
x=\frac{\sqrt{161}-1}{-8}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{161}}{-8} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{161}.
x=\frac{1-\sqrt{161}}{8}
Whakawehe -1+\sqrt{161} ki te -8.
x=\frac{-\sqrt{161}-1}{-8}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{161}}{-8} ina he tango te ±. Tango \sqrt{161} mai i -1.
x=\frac{\sqrt{161}+1}{8}
Whakawehe -1-\sqrt{161} ki te -8.
-4x^{2}+x+10=-4\left(x-\frac{1-\sqrt{161}}{8}\right)\left(x-\frac{\sqrt{161}+1}{8}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1-\sqrt{161}}{8} mō te x_{1} me te \frac{1+\sqrt{161}}{8} mō te x_{2}.
10-4x^{2}+x
Tāpirihia te 1 ki te 9, ka 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}