Whakaoti mō z
z=\frac{3+\sqrt{1091}i}{550}\approx 0.005454545+0.060055071i
z=\frac{-\sqrt{1091}i+3}{550}\approx 0.005454545-0.060055071i
Tohaina
Kua tāruatia ki te papatopenga
1-3z+275z^{2}-0z^{3}=0
Whakareatia te 0 ki te 75, ka 0.
1-3z+275z^{2}-0=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
275z^{2}-3z+1=0
Whakaraupapatia anō ngā kīanga tau.
z=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 275}}{2\times 275}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 275 mō a, -3 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-3\right)±\sqrt{9-4\times 275}}{2\times 275}
Pūrua -3.
z=\frac{-\left(-3\right)±\sqrt{9-1100}}{2\times 275}
Whakareatia -4 ki te 275.
z=\frac{-\left(-3\right)±\sqrt{-1091}}{2\times 275}
Tāpiri 9 ki te -1100.
z=\frac{-\left(-3\right)±\sqrt{1091}i}{2\times 275}
Tuhia te pūtakerua o te -1091.
z=\frac{3±\sqrt{1091}i}{2\times 275}
Ko te tauaro o -3 ko 3.
z=\frac{3±\sqrt{1091}i}{550}
Whakareatia 2 ki te 275.
z=\frac{3+\sqrt{1091}i}{550}
Nā, me whakaoti te whārite z=\frac{3±\sqrt{1091}i}{550} ina he tāpiri te ±. Tāpiri 3 ki te i\sqrt{1091}.
z=\frac{-\sqrt{1091}i+3}{550}
Nā, me whakaoti te whārite z=\frac{3±\sqrt{1091}i}{550} ina he tango te ±. Tango i\sqrt{1091} mai i 3.
z=\frac{3+\sqrt{1091}i}{550} z=\frac{-\sqrt{1091}i+3}{550}
Kua oti te whārite te whakatau.
1-3z+275z^{2}-0z^{3}=0
Whakareatia te 0 ki te 75, ka 0.
1-3z+275z^{2}-0=0
Ko te tau i whakarea ki te kore ka hua ko te kore.
1-3z+275z^{2}=0+0
Me tāpiri te 0 ki ngā taha e rua.
1-3z+275z^{2}=0
Tāpirihia te 0 ki te 0, ka 0.
-3z+275z^{2}=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
275z^{2}-3z=-1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{275z^{2}-3z}{275}=-\frac{1}{275}
Whakawehea ngā taha e rua ki te 275.
z^{2}-\frac{3}{275}z=-\frac{1}{275}
Mā te whakawehe ki te 275 ka wetekia te whakareanga ki te 275.
z^{2}-\frac{3}{275}z+\left(-\frac{3}{550}\right)^{2}=-\frac{1}{275}+\left(-\frac{3}{550}\right)^{2}
Whakawehea te -\frac{3}{275}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{550}. Nā, tāpiria te pūrua o te -\frac{3}{550} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
z^{2}-\frac{3}{275}z+\frac{9}{302500}=-\frac{1}{275}+\frac{9}{302500}
Pūruatia -\frac{3}{550} mā te pūrua i te taurunga me te tauraro o te hautanga.
z^{2}-\frac{3}{275}z+\frac{9}{302500}=-\frac{1091}{302500}
Tāpiri -\frac{1}{275} ki te \frac{9}{302500} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(z-\frac{3}{550}\right)^{2}=-\frac{1091}{302500}
Tauwehea z^{2}-\frac{3}{275}z+\frac{9}{302500}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{3}{550}\right)^{2}}=\sqrt{-\frac{1091}{302500}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z-\frac{3}{550}=\frac{\sqrt{1091}i}{550} z-\frac{3}{550}=-\frac{\sqrt{1091}i}{550}
Whakarūnātia.
z=\frac{3+\sqrt{1091}i}{550} z=\frac{-\sqrt{1091}i+3}{550}
Me tāpiri \frac{3}{550} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}