Aromātai
-\frac{2\left(3x+1\right)}{1-3x}
Whakaroha
-\frac{2\left(3x+1\right)}{1-3x}
Graph
Tohaina
Kua tāruatia ki te papatopenga
1-\frac{3\left(1+x\right)}{1-3x}
Tuhia te 3\times \frac{1+x}{1-3x} hei hautanga kotahi.
1-\frac{3+3x}{1-3x}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 1+x.
\frac{1-3x}{1-3x}-\frac{3+3x}{1-3x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{1-3x}{1-3x}.
\frac{1-3x-\left(3+3x\right)}{1-3x}
Tā te mea he rite te tauraro o \frac{1-3x}{1-3x} me \frac{3+3x}{1-3x}, me tango rāua mā te tango i ō raua taurunga.
\frac{1-3x-3-3x}{1-3x}
Mahia ngā whakarea i roto o 1-3x-\left(3+3x\right).
\frac{-2-6x}{1-3x}
Whakakotahitia ngā kupu rite i 1-3x-3-3x.
1-\frac{3\left(1+x\right)}{1-3x}
Tuhia te 3\times \frac{1+x}{1-3x} hei hautanga kotahi.
1-\frac{3+3x}{1-3x}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 1+x.
\frac{1-3x}{1-3x}-\frac{3+3x}{1-3x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{1-3x}{1-3x}.
\frac{1-3x-\left(3+3x\right)}{1-3x}
Tā te mea he rite te tauraro o \frac{1-3x}{1-3x} me \frac{3+3x}{1-3x}, me tango rāua mā te tango i ō raua taurunga.
\frac{1-3x-3-3x}{1-3x}
Mahia ngā whakarea i roto o 1-3x-\left(3+3x\right).
\frac{-2-6x}{1-3x}
Whakakotahitia ngā kupu rite i 1-3x-3-3x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}