Whakaoti mō x
x=-4
x=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
2-4x+x^{2}=34
Whakareatia ngā taha e rua o te whārite ki te 2.
2-4x+x^{2}-34=0
Tangohia te 34 mai i ngā taha e rua.
-32-4x+x^{2}=0
Tangohia te 34 i te 2, ka -32.
x^{2}-4x-32=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-4 ab=-32
Hei whakaoti i te whārite, whakatauwehea te x^{2}-4x-32 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-32 2,-16 4,-8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -32.
1-32=-31 2-16=-14 4-8=-4
Tātaihia te tapeke mō ia takirua.
a=-8 b=4
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(x-8\right)\left(x+4\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=8 x=-4
Hei kimi otinga whārite, me whakaoti te x-8=0 me te x+4=0.
2-4x+x^{2}=34
Whakareatia ngā taha e rua o te whārite ki te 2.
2-4x+x^{2}-34=0
Tangohia te 34 mai i ngā taha e rua.
-32-4x+x^{2}=0
Tangohia te 34 i te 2, ka -32.
x^{2}-4x-32=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-4 ab=1\left(-32\right)=-32
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-32. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-32 2,-16 4,-8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -32.
1-32=-31 2-16=-14 4-8=-4
Tātaihia te tapeke mō ia takirua.
a=-8 b=4
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(x^{2}-8x\right)+\left(4x-32\right)
Tuhia anō te x^{2}-4x-32 hei \left(x^{2}-8x\right)+\left(4x-32\right).
x\left(x-8\right)+4\left(x-8\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-8\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi x-8 mā te whakamahi i te āhuatanga tātai tohatoha.
x=8 x=-4
Hei kimi otinga whārite, me whakaoti te x-8=0 me te x+4=0.
\frac{1}{2}x^{2}-2x+1=17
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
\frac{1}{2}x^{2}-2x+1-17=17-17
Me tango 17 mai i ngā taha e rua o te whārite.
\frac{1}{2}x^{2}-2x+1-17=0
Mā te tango i te 17 i a ia ake anō ka toe ko te 0.
\frac{1}{2}x^{2}-2x-16=0
Tango 17 mai i 1.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{1}{2}\left(-16\right)}}{2\times \frac{1}{2}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{1}{2} mō a, -2 mō b, me -16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{1}{2}\left(-16\right)}}{2\times \frac{1}{2}}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4-2\left(-16\right)}}{2\times \frac{1}{2}}
Whakareatia -4 ki te \frac{1}{2}.
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2\times \frac{1}{2}}
Whakareatia -2 ki te -16.
x=\frac{-\left(-2\right)±\sqrt{36}}{2\times \frac{1}{2}}
Tāpiri 4 ki te 32.
x=\frac{-\left(-2\right)±6}{2\times \frac{1}{2}}
Tuhia te pūtakerua o te 36.
x=\frac{2±6}{2\times \frac{1}{2}}
Ko te tauaro o -2 ko 2.
x=\frac{2±6}{1}
Whakareatia 2 ki te \frac{1}{2}.
x=\frac{8}{1}
Nā, me whakaoti te whārite x=\frac{2±6}{1} ina he tāpiri te ±. Tāpiri 2 ki te 6.
x=8
Whakawehe 8 ki te 1.
x=-\frac{4}{1}
Nā, me whakaoti te whārite x=\frac{2±6}{1} ina he tango te ±. Tango 6 mai i 2.
x=-4
Whakawehe -4 ki te 1.
x=8 x=-4
Kua oti te whārite te whakatau.
\frac{1}{2}x^{2}-2x+1=17
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{1}{2}x^{2}-2x+1-1=17-1
Me tango 1 mai i ngā taha e rua o te whārite.
\frac{1}{2}x^{2}-2x=17-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{1}{2}x^{2}-2x=16
Tango 1 mai i 17.
\frac{\frac{1}{2}x^{2}-2x}{\frac{1}{2}}=\frac{16}{\frac{1}{2}}
Me whakarea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{2}{\frac{1}{2}}\right)x=\frac{16}{\frac{1}{2}}
Mā te whakawehe ki te \frac{1}{2} ka wetekia te whakareanga ki te \frac{1}{2}.
x^{2}-4x=\frac{16}{\frac{1}{2}}
Whakawehe -2 ki te \frac{1}{2} mā te whakarea -2 ki te tau huripoki o \frac{1}{2}.
x^{2}-4x=32
Whakawehe 16 ki te \frac{1}{2} mā te whakarea 16 ki te tau huripoki o \frac{1}{2}.
x^{2}-4x+\left(-2\right)^{2}=32+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=32+4
Pūrua -2.
x^{2}-4x+4=36
Tāpiri 32 ki te 4.
\left(x-2\right)^{2}=36
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=6 x-2=-6
Whakarūnātia.
x=8 x=-4
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}