Aromātai
\frac{527}{625}=0.8432
Tauwehe
\frac{17 \cdot 31}{5 ^ {4}} = 0.8432
Tohaina
Kua tāruatia ki te papatopenga
1-2\times \frac{49}{625}
Tātaihia te \frac{7}{25} mā te pū o 2, kia riro ko \frac{49}{625}.
1-\frac{2\times 49}{625}
Tuhia te 2\times \frac{49}{625} hei hautanga kotahi.
1-\frac{98}{625}
Whakareatia te 2 ki te 49, ka 98.
\frac{625}{625}-\frac{98}{625}
Me tahuri te 1 ki te hautau \frac{625}{625}.
\frac{625-98}{625}
Tā te mea he rite te tauraro o \frac{625}{625} me \frac{98}{625}, me tango rāua mā te tango i ō raua taurunga.
\frac{527}{625}
Tangohia te 98 i te 625, ka 527.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}