Aromātai
\frac{3329}{3500}\approx 0.951142857
Tauwehe
\frac{3329}{7 \cdot 2 ^ {2} \cdot 5 ^ {3}} = 0.9511428571428572
Tohaina
Kua tāruatia ki te papatopenga
1-0.171\left(1-\frac{3}{4.2}\right)
Tāpirihia te 3 ki te 1.2, ka 4.2.
1-0.171\left(1-\frac{30}{42}\right)
Whakarohaina te \frac{3}{4.2} mā te whakarea i te taurunga me te tauraro ki te 10.
1-0.171\left(1-\frac{5}{7}\right)
Whakahekea te hautanga \frac{30}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
1-0.171\left(\frac{7}{7}-\frac{5}{7}\right)
Me tahuri te 1 ki te hautau \frac{7}{7}.
1-0.171\times \frac{7-5}{7}
Tā te mea he rite te tauraro o \frac{7}{7} me \frac{5}{7}, me tango rāua mā te tango i ō raua taurunga.
1-0.171\times \frac{2}{7}
Tangohia te 5 i te 7, ka 2.
1-\frac{171}{1000}\times \frac{2}{7}
Me tahuri ki tau ā-ira 0.171 ki te hautau \frac{171}{1000}.
1-\frac{171\times 2}{1000\times 7}
Me whakarea te \frac{171}{1000} ki te \frac{2}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
1-\frac{342}{7000}
Mahia ngā whakarea i roto i te hautanga \frac{171\times 2}{1000\times 7}.
1-\frac{171}{3500}
Whakahekea te hautanga \frac{342}{7000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{3500}{3500}-\frac{171}{3500}
Me tahuri te 1 ki te hautau \frac{3500}{3500}.
\frac{3500-171}{3500}
Tā te mea he rite te tauraro o \frac{3500}{3500} me \frac{171}{3500}, me tango rāua mā te tango i ō raua taurunga.
\frac{3329}{3500}
Tangohia te 171 i te 3500, ka 3329.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}