Aromātai
\frac{5}{21}\approx 0.238095238
Tauwehe
\frac{5}{3 \cdot 7} = 0.23809523809523808
Tohaina
Kua tāruatia ki te papatopenga
1-\left(\frac{9}{21}+\frac{7}{21}\right)
Ko te maha noa iti rawa atu o 7 me 3 ko 21. Me tahuri \frac{3}{7} me \frac{1}{3} ki te hautau me te tautūnga 21.
1-\frac{9+7}{21}
Tā te mea he rite te tauraro o \frac{9}{21} me \frac{7}{21}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
1-\frac{16}{21}
Tāpirihia te 9 ki te 7, ka 16.
\frac{21}{21}-\frac{16}{21}
Me tahuri te 1 ki te hautau \frac{21}{21}.
\frac{21-16}{21}
Tā te mea he rite te tauraro o \frac{21}{21} me \frac{16}{21}, me tango rāua mā te tango i ō raua taurunga.
\frac{5}{21}
Tangohia te 16 i te 21, ka 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}