Aromātai
\frac{3}{10}=0.3
Tauwehe
\frac{3}{2 \cdot 5} = 0.3
Tohaina
Kua tāruatia ki te papatopenga
1-\frac{84}{5^{3}-5}
Whakareatia te 6 ki te 14, ka 84.
1-\frac{84}{125-5}
Tātaihia te 5 mā te pū o 3, kia riro ko 125.
1-\frac{84}{120}
Tangohia te 5 i te 125, ka 120.
1-\frac{7}{10}
Whakahekea te hautanga \frac{84}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
\frac{10}{10}-\frac{7}{10}
Me tahuri te 1 ki te hautau \frac{10}{10}.
\frac{10-7}{10}
Tā te mea he rite te tauraro o \frac{10}{10} me \frac{7}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{3}{10}
Tangohia te 7 i te 10, ka 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}