1,6 - 4,2 - 0,05 - 1 \frac { 3 } { 5 } =
Kōmaka
1,2,2,\frac{17}{5}
Aromātai
1,2,2,\frac{17}{5}
Tohaina
Kua tāruatia ki te papatopenga
sort(1,2,2-0,5-\frac{1\times 5+3}{5})
Tangohia te 4 i te 6, ka 2.
sort(1,2,2,5-\frac{1\times 5+3}{5})
Tangohia te 0 i te 2, ka 2.
sort(1,2,2,5-\frac{5+3}{5})
Whakareatia te 1 ki te 5, ka 5.
sort(1,2,2,5-\frac{8}{5})
Tāpirihia te 5 ki te 3, ka 8.
sort(1,2,2,\frac{25}{5}-\frac{8}{5})
Me tahuri te 5 ki te hautau \frac{25}{5}.
sort(1,2,2,\frac{25-8}{5})
Tā te mea he rite te tauraro o \frac{25}{5} me \frac{8}{5}, me tango rāua mā te tango i ō raua taurunga.
sort(1,2,2,\frac{17}{5})
Tangohia te 8 i te 25, ka 17.
1,2,2,\frac{17}{5}
Tahuritia ngā tau ā-ira i te rārangi 1,2,2,\frac{17}{5} ki ngā hautanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}