Aromātai
-\frac{3x^{2}}{2}+\frac{19x}{2}-12
Whakaroha
-\frac{3x^{2}}{2}+\frac{19x}{2}-12
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{2}+2\left(x-2\right)-\frac{3\left(x-2\right)\left(x-3\right)}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{2}{2}.
\frac{2-3\left(x-2\right)\left(x-3\right)}{2}+2\left(x-2\right)
Tā te mea he rite te tauraro o \frac{2}{2} me \frac{3\left(x-2\right)\left(x-3\right)}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{2-3x^{2}+9x+6x-18}{2}+2\left(x-2\right)
Mahia ngā whakarea i roto o 2-3\left(x-2\right)\left(x-3\right).
\frac{-16-3x^{2}+15x}{2}+2\left(x-2\right)
Whakakotahitia ngā kupu rite i 2-3x^{2}+9x+6x-18.
1+2x-4-\frac{3\left(x-2\right)\left(x-3\right)}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-2.
-3+2x-\frac{3\left(x-2\right)\left(x-3\right)}{2}
Tangohia te 4 i te 1, ka -3.
-3+2x-\frac{\left(3x-6\right)\left(x-3\right)}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2.
-3+2x-\frac{3x^{2}-9x-6x+18}{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3x-6 ki ia tau o x-3.
-3+2x-\frac{3x^{2}-15x+18}{2}
Pahekotia te -9x me -6x, ka -15x.
\frac{2\left(-3+2x\right)}{2}-\frac{3x^{2}-15x+18}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -3+2x ki te \frac{2}{2}.
\frac{2\left(-3+2x\right)-\left(3x^{2}-15x+18\right)}{2}
Tā te mea he rite te tauraro o \frac{2\left(-3+2x\right)}{2} me \frac{3x^{2}-15x+18}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{-6+4x-3x^{2}+15x-18}{2}
Mahia ngā whakarea i roto o 2\left(-3+2x\right)-\left(3x^{2}-15x+18\right).
\frac{-24+19x-3x^{2}}{2}
Whakakotahitia ngā kupu rite i -6+4x-3x^{2}+15x-18.
\frac{2}{2}+2\left(x-2\right)-\frac{3\left(x-2\right)\left(x-3\right)}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{2}{2}.
\frac{2-3\left(x-2\right)\left(x-3\right)}{2}+2\left(x-2\right)
Tā te mea he rite te tauraro o \frac{2}{2} me \frac{3\left(x-2\right)\left(x-3\right)}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{2-3x^{2}+9x+6x-18}{2}+2\left(x-2\right)
Mahia ngā whakarea i roto o 2-3\left(x-2\right)\left(x-3\right).
\frac{-16-3x^{2}+15x}{2}+2\left(x-2\right)
Whakakotahitia ngā kupu rite i 2-3x^{2}+9x+6x-18.
1+2x-4-\frac{3\left(x-2\right)\left(x-3\right)}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-2.
-3+2x-\frac{3\left(x-2\right)\left(x-3\right)}{2}
Tangohia te 4 i te 1, ka -3.
-3+2x-\frac{\left(3x-6\right)\left(x-3\right)}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2.
-3+2x-\frac{3x^{2}-9x-6x+18}{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 3x-6 ki ia tau o x-3.
-3+2x-\frac{3x^{2}-15x+18}{2}
Pahekotia te -9x me -6x, ka -15x.
\frac{2\left(-3+2x\right)}{2}-\frac{3x^{2}-15x+18}{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -3+2x ki te \frac{2}{2}.
\frac{2\left(-3+2x\right)-\left(3x^{2}-15x+18\right)}{2}
Tā te mea he rite te tauraro o \frac{2\left(-3+2x\right)}{2} me \frac{3x^{2}-15x+18}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{-6+4x-3x^{2}+15x-18}{2}
Mahia ngā whakarea i roto o 2\left(-3+2x\right)-\left(3x^{2}-15x+18\right).
\frac{-24+19x-3x^{2}}{2}
Whakakotahitia ngā kupu rite i -6+4x-3x^{2}+15x-18.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}