Whakaoti mō x
x = \frac{5 \sqrt{2}}{3} \approx 2.357022604
x = -\frac{5 \sqrt{2}}{3} \approx -2.357022604
Graph
Tohaina
Kua tāruatia ki te papatopenga
1+1=x^{2}\times 0.36
Whakareatia te x ki te x, ka x^{2}.
2=x^{2}\times 0.36
Tāpirihia te 1 ki te 1, ka 2.
x^{2}\times 0.36=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=\frac{2}{0.36}
Whakawehea ngā taha e rua ki te 0.36.
x^{2}=\frac{200}{36}
Whakarohaina te \frac{2}{0.36} mā te whakarea i te taurunga me te tauraro ki te 100.
x^{2}=\frac{50}{9}
Whakahekea te hautanga \frac{200}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{5\sqrt{2}}{3} x=-\frac{5\sqrt{2}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
1+1=x^{2}\times 0.36
Whakareatia te x ki te x, ka x^{2}.
2=x^{2}\times 0.36
Tāpirihia te 1 ki te 1, ka 2.
x^{2}\times 0.36=2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}\times 0.36-2=0
Tangohia te 2 mai i ngā taha e rua.
0.36x^{2}-2=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 0.36\left(-2\right)}}{2\times 0.36}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 0.36 mō a, 0 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 0.36\left(-2\right)}}{2\times 0.36}
Pūrua 0.
x=\frac{0±\sqrt{-1.44\left(-2\right)}}{2\times 0.36}
Whakareatia -4 ki te 0.36.
x=\frac{0±\sqrt{2.88}}{2\times 0.36}
Whakareatia -1.44 ki te -2.
x=\frac{0±\frac{6\sqrt{2}}{5}}{2\times 0.36}
Tuhia te pūtakerua o te 2.88.
x=\frac{0±\frac{6\sqrt{2}}{5}}{0.72}
Whakareatia 2 ki te 0.36.
x=\frac{5\sqrt{2}}{3}
Nā, me whakaoti te whārite x=\frac{0±\frac{6\sqrt{2}}{5}}{0.72} ina he tāpiri te ±.
x=-\frac{5\sqrt{2}}{3}
Nā, me whakaoti te whārite x=\frac{0±\frac{6\sqrt{2}}{5}}{0.72} ina he tango te ±.
x=\frac{5\sqrt{2}}{3} x=-\frac{5\sqrt{2}}{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}