Aromātai
12
Tauwehe
2^{2}\times 3
Tohaina
Kua tāruatia ki te papatopenga
2+1+1+1+1+1+1+1+1+1+1\times 0+1
Tāpirihia te 1 ki te 1, ka 2.
3+1+1+1+1+1+1+1+1+1\times 0+1
Tāpirihia te 2 ki te 1, ka 3.
4+1+1+1+1+1+1+1+1\times 0+1
Tāpirihia te 3 ki te 1, ka 4.
5+1+1+1+1+1+1+1\times 0+1
Tāpirihia te 4 ki te 1, ka 5.
6+1+1+1+1+1+1\times 0+1
Tāpirihia te 5 ki te 1, ka 6.
7+1+1+1+1+1\times 0+1
Tāpirihia te 6 ki te 1, ka 7.
8+1+1+1+1\times 0+1
Tāpirihia te 7 ki te 1, ka 8.
9+1+1+1\times 0+1
Tāpirihia te 8 ki te 1, ka 9.
10+1+1\times 0+1
Tāpirihia te 9 ki te 1, ka 10.
11+1\times 0+1
Tāpirihia te 10 ki te 1, ka 11.
11+0+1
Whakareatia te 1 ki te 0, ka 0.
11+1
Tāpirihia te 11 ki te 0, ka 11.
12
Tāpirihia te 11 ki te 1, ka 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}