Aromātai
\frac{7}{6}\approx 1.166666667
Tauwehe
\frac{7}{2 \cdot 3} = 1\frac{1}{6} = 1.1666666666666667
Tohaina
Kua tāruatia ki te papatopenga
1+\frac{4\left(-5\right)}{5\times 2}+\frac{2}{\frac{3}{2}}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Me whakarea te \frac{4}{5} ki te -\frac{5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
1+\frac{-20}{10}+\frac{2}{\frac{3}{2}}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Mahia ngā whakarea i roto i te hautanga \frac{4\left(-5\right)}{5\times 2}.
1-2+\frac{2}{\frac{3}{2}}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Whakawehea te -20 ki te 10, kia riro ko -2.
-1+\frac{2}{\frac{3}{2}}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Tangohia te 2 i te 1, ka -1.
-1+2\times \frac{2}{3}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Whakawehe 2 ki te \frac{3}{2} mā te whakarea 2 ki te tau huripoki o \frac{3}{2}.
-1+\frac{2\times 2}{3}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Tuhia te 2\times \frac{2}{3} hei hautanga kotahi.
-1+\frac{4}{3}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Whakareatia te 2 ki te 2, ka 4.
-\frac{3}{3}+\frac{4}{3}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Me tahuri te -1 ki te hautau -\frac{3}{3}.
\frac{-3+4}{3}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Tā te mea he rite te tauraro o -\frac{3}{3} me \frac{4}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{3}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Tāpirihia te -3 ki te 4, ka 1.
\frac{1}{3}-2\left(\frac{4}{12}-\frac{9}{12}\right)
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{1}{3} me \frac{3}{4} ki te hautau me te tautūnga 12.
\frac{1}{3}-2\times \frac{4-9}{12}
Tā te mea he rite te tauraro o \frac{4}{12} me \frac{9}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{3}-2\left(-\frac{5}{12}\right)
Tangohia te 9 i te 4, ka -5.
\frac{1}{3}-\frac{2\left(-5\right)}{12}
Tuhia te 2\left(-\frac{5}{12}\right) hei hautanga kotahi.
\frac{1}{3}-\frac{-10}{12}
Whakareatia te 2 ki te -5, ka -10.
\frac{1}{3}-\left(-\frac{5}{6}\right)
Whakahekea te hautanga \frac{-10}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{3}+\frac{5}{6}
Ko te tauaro o -\frac{5}{6} ko \frac{5}{6}.
\frac{2}{6}+\frac{5}{6}
Ko te maha noa iti rawa atu o 3 me 6 ko 6. Me tahuri \frac{1}{3} me \frac{5}{6} ki te hautau me te tautūnga 6.
\frac{2+5}{6}
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{5}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7}{6}
Tāpirihia te 2 ki te 5, ka 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}