Aromātai
\frac{221}{200}=1.105
Tauwehe
\frac{13 \cdot 17}{2 ^ {3} \cdot 5 ^ {2}} = 1\frac{21}{200} = 1.105
Tohaina
Kua tāruatia ki te papatopenga
\frac{10}{10}+\frac{1}{10}+\frac{5}{1000}
Me tahuri te 1 ki te hautau \frac{10}{10}.
\frac{10+1}{10}+\frac{5}{1000}
Tā te mea he rite te tauraro o \frac{10}{10} me \frac{1}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{11}{10}+\frac{5}{1000}
Tāpirihia te 10 ki te 1, ka 11.
\frac{11}{10}+\frac{1}{200}
Whakahekea te hautanga \frac{5}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{220}{200}+\frac{1}{200}
Ko te maha noa iti rawa atu o 10 me 200 ko 200. Me tahuri \frac{11}{10} me \frac{1}{200} ki te hautau me te tautūnga 200.
\frac{220+1}{200}
Tā te mea he rite te tauraro o \frac{220}{200} me \frac{1}{200}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{221}{200}
Tāpirihia te 220 ki te 1, ka 221.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}