Whakaoti mō m
m=1
m=0
Tohaina
Kua tāruatia ki te papatopenga
1m=m^{2}
Whakareatia te m ki te m, ka m^{2}.
1m-m^{2}=0
Tangohia te m^{2} mai i ngā taha e rua.
-m^{2}+m=0
Whakaraupapatia anō ngā kīanga tau.
m\left(-m+1\right)=0
Tauwehea te m.
m=0 m=1
Hei kimi otinga whārite, me whakaoti te m=0 me te -m+1=0.
1m=m^{2}
Whakareatia te m ki te m, ka m^{2}.
1m-m^{2}=0
Tangohia te m^{2} mai i ngā taha e rua.
-m^{2}+m=0
Whakaraupapatia anō ngā kīanga tau.
m=\frac{-1±\sqrt{1^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 1 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-1±1}{2\left(-1\right)}
Tuhia te pūtakerua o te 1^{2}.
m=\frac{-1±1}{-2}
Whakareatia 2 ki te -1.
m=\frac{0}{-2}
Nā, me whakaoti te whārite m=\frac{-1±1}{-2} ina he tāpiri te ±. Tāpiri -1 ki te 1.
m=0
Whakawehe 0 ki te -2.
m=-\frac{2}{-2}
Nā, me whakaoti te whārite m=\frac{-1±1}{-2} ina he tango te ±. Tango 1 mai i -1.
m=1
Whakawehe -2 ki te -2.
m=0 m=1
Kua oti te whārite te whakatau.
1m=m^{2}
Whakareatia te m ki te m, ka m^{2}.
1m-m^{2}=0
Tangohia te m^{2} mai i ngā taha e rua.
-m^{2}+m=0
Whakaraupapatia anō ngā kīanga tau.
\frac{-m^{2}+m}{-1}=\frac{0}{-1}
Whakawehea ngā taha e rua ki te -1.
m^{2}+\frac{1}{-1}m=\frac{0}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
m^{2}-m=\frac{0}{-1}
Whakawehe 1 ki te -1.
m^{2}-m=0
Whakawehe 0 ki te -1.
m^{2}-m+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-m+\frac{1}{4}=\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(m-\frac{1}{2}\right)^{2}=\frac{1}{4}
Tauwehea m^{2}-m+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-\frac{1}{2}=\frac{1}{2} m-\frac{1}{2}=-\frac{1}{2}
Whakarūnātia.
m=1 m=0
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}