Whakaoti mō h
\left\{\begin{matrix}h=\frac{18k}{5s}\text{, }&k\neq 0\text{ and }s\neq 0\\h\neq 0\text{, }&m=0\text{ or }\left(s=0\text{ and }k=0\right)\end{matrix}\right.
Whakaoti mō k
\left\{\begin{matrix}k=\frac{5hs}{18}\text{, }&h\neq 0\\k\in \mathrm{R}\text{, }&m=0\text{ and }h\neq 0\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
3600\times 1km=h\times 1000ms
Tē taea kia ōrite te tāupe h ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3600h, arā, te tauraro pātahi he tino iti rawa te kitea o h,3600.
3600km=h\times 1000ms
Whakareatia te 3600 ki te 1, ka 3600.
h\times 1000ms=3600km
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1000msh=3600km
He hanga arowhānui tō te whārite.
\frac{1000msh}{1000ms}=\frac{3600km}{1000ms}
Whakawehea ngā taha e rua ki te 1000ms.
h=\frac{3600km}{1000ms}
Mā te whakawehe ki te 1000ms ka wetekia te whakareanga ki te 1000ms.
h=\frac{18k}{5s}
Whakawehe 3600km ki te 1000ms.
h=\frac{18k}{5s}\text{, }h\neq 0
Tē taea kia ōrite te tāupe h ki 0.
3600\times 1km=h\times 1000ms
Me whakarea ngā taha e rua o te whārite ki te 3600h, arā, te tauraro pātahi he tino iti rawa te kitea o h,3600.
3600km=h\times 1000ms
Whakareatia te 3600 ki te 1, ka 3600.
3600mk=1000hms
He hanga arowhānui tō te whārite.
\frac{3600mk}{3600m}=\frac{1000hms}{3600m}
Whakawehea ngā taha e rua ki te 3600m.
k=\frac{1000hms}{3600m}
Mā te whakawehe ki te 3600m ka wetekia te whakareanga ki te 3600m.
k=\frac{5hs}{18}
Whakawehe 1000hms ki te 3600m.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}