Whakaoti mō S
S=15
Tohaina
Kua tāruatia ki te papatopenga
S-6\times 1=-1+3-\left(1+2\right)+10
Whakareatia te 1 ki te 1, ka 1.
S-6=-1+3-\left(1+2\right)+10
Whakareatia te 6 ki te 1, ka 6.
S-6=2-\left(1+2\right)+10
Tāpirihia te -1 ki te 3, ka 2.
S-6=2-3+10
Tāpirihia te 1 ki te 2, ka 3.
S-6=-1+10
Tangohia te 3 i te 2, ka -1.
S-6=9
Tāpirihia te -1 ki te 10, ka 9.
S=9+6
Me tāpiri te 6 ki ngā taha e rua.
S=15
Tāpirihia te 9 ki te 6, ka 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}