Whakaoti mō x
x=-1
x=\frac{2}{3}\approx 0.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
1-x^{2}-2x^{2}=-1+x
Tangohia te 2x^{2} mai i ngā taha e rua.
1-3x^{2}=-1+x
Pahekotia te -x^{2} me -2x^{2}, ka -3x^{2}.
1-3x^{2}-\left(-1\right)=x
Tangohia te -1 mai i ngā taha e rua.
1-3x^{2}+1=x
Ko te tauaro o -1 ko 1.
2\times 1-3x^{2}=x
Pahekotia te 1 me 1, ka 2\times 1.
2\times 1-3x^{2}-x=0
Tangohia te x mai i ngā taha e rua.
2-3x^{2}-x=0
Whakareatia te 2 ki te 1, ka 2.
-3x^{2}-x+2=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-1 ab=-3\times 2=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -3x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=2 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(-3x^{2}+2x\right)+\left(-3x+2\right)
Tuhia anō te -3x^{2}-x+2 hei \left(-3x^{2}+2x\right)+\left(-3x+2\right).
-x\left(3x-2\right)-\left(3x-2\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(3x-2\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi 3x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{2}{3} x=-1
Hei kimi otinga whārite, me whakaoti te 3x-2=0 me te -x-1=0.
1-x^{2}-2x^{2}=-1+x
Tangohia te 2x^{2} mai i ngā taha e rua.
1-3x^{2}=-1+x
Pahekotia te -x^{2} me -2x^{2}, ka -3x^{2}.
1-3x^{2}-\left(-1\right)=x
Tangohia te -1 mai i ngā taha e rua.
1-3x^{2}+1=x
Ko te tauaro o -1 ko 1.
2\times 1-3x^{2}=x
Pahekotia te 1 me 1, ka 2\times 1.
2\times 1-3x^{2}-x=0
Tangohia te x mai i ngā taha e rua.
2-3x^{2}-x=0
Whakareatia te 2 ki te 1, ka 2.
-3x^{2}-x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-3\right)\times 2}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -1 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+12\times 2}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\left(-3\right)}
Whakareatia 12 ki te 2.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\left(-3\right)}
Tāpiri 1 ki te 24.
x=\frac{-\left(-1\right)±5}{2\left(-3\right)}
Tuhia te pūtakerua o te 25.
x=\frac{1±5}{2\left(-3\right)}
Ko te tauaro o -1 ko 1.
x=\frac{1±5}{-6}
Whakareatia 2 ki te -3.
x=\frac{6}{-6}
Nā, me whakaoti te whārite x=\frac{1±5}{-6} ina he tāpiri te ±. Tāpiri 1 ki te 5.
x=-1
Whakawehe 6 ki te -6.
x=-\frac{4}{-6}
Nā, me whakaoti te whārite x=\frac{1±5}{-6} ina he tango te ±. Tango 5 mai i 1.
x=\frac{2}{3}
Whakahekea te hautanga \frac{-4}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-1 x=\frac{2}{3}
Kua oti te whārite te whakatau.
1-x^{2}-2x^{2}=-1+x
Tangohia te 2x^{2} mai i ngā taha e rua.
1-3x^{2}=-1+x
Pahekotia te -x^{2} me -2x^{2}, ka -3x^{2}.
1-3x^{2}-x=-1
Tangohia te x mai i ngā taha e rua.
-3x^{2}-x=-1-1
Tangohia te 1 mai i ngā taha e rua.
-3x^{2}-x=-2
Tangohia te 1 i te -1, ka -2.
\frac{-3x^{2}-x}{-3}=-\frac{2}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\left(-\frac{1}{-3}\right)x=-\frac{2}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}+\frac{1}{3}x=-\frac{2}{-3}
Whakawehe -1 ki te -3.
x^{2}+\frac{1}{3}x=\frac{2}{3}
Whakawehe -2 ki te -3.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(\frac{1}{6}\right)^{2}
Whakawehea te \frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{6}. Nā, tāpiria te pūrua o te \frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
Pūruatia \frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
Tāpiri \frac{2}{3} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{6}\right)^{2}=\frac{25}{36}
Tauwehea x^{2}+\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{6}=\frac{5}{6} x+\frac{1}{6}=-\frac{5}{6}
Whakarūnātia.
x=\frac{2}{3} x=-1
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}