Whakaoti mō u
u=\frac{1}{y+1}
y\neq -1
Whakaoti mō y
y=-1+\frac{1}{u}
u\neq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
1-uy-u=0
Tangohia te u mai i ngā taha e rua.
-uy-u=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(-y-1\right)u=-1
Pahekotia ngā kīanga tau katoa e whai ana i te u.
\frac{\left(-y-1\right)u}{-y-1}=-\frac{1}{-y-1}
Whakawehea ngā taha e rua ki te -y-1.
u=-\frac{1}{-y-1}
Mā te whakawehe ki te -y-1 ka wetekia te whakareanga ki te -y-1.
u=\frac{1}{y+1}
Whakawehe -1 ki te -y-1.
-uy=u-1
Tangohia te 1 mai i ngā taha e rua.
\left(-u\right)y=u-1
He hanga arowhānui tō te whārite.
\frac{\left(-u\right)y}{-u}=\frac{u-1}{-u}
Whakawehea ngā taha e rua ki te -u.
y=\frac{u-1}{-u}
Mā te whakawehe ki te -u ka wetekia te whakareanga ki te -u.
y=-1+\frac{1}{u}
Whakawehe u-1 ki te -u.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}