Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1-t^{2}=1\times 0
Pahekotia te t me -t, ka 0.
1-t^{2}=0
Whakareatia te 1 ki te 0, ka 0.
-t^{2}=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
t^{2}=\frac{-1}{-1}
Whakawehea ngā taha e rua ki te -1.
t^{2}=1
Whakawehea te -1 ki te -1, kia riro ko 1.
t=1 t=-1
Tuhia te pūtakerua o ngā taha e rua o te whārite.
1-t^{2}=1\times 0
Pahekotia te t me -t, ka 0.
1-t^{2}=0
Whakareatia te 1 ki te 0, ka 0.
-t^{2}+1=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
t=\frac{0±\sqrt{0^{2}-4\left(-1\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-1\right)}}{2\left(-1\right)}
Pūrua 0.
t=\frac{0±\sqrt{4}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
t=\frac{0±2}{2\left(-1\right)}
Tuhia te pūtakerua o te 4.
t=\frac{0±2}{-2}
Whakareatia 2 ki te -1.
t=-1
Nā, me whakaoti te whārite t=\frac{0±2}{-2} ina he tāpiri te ±. Whakawehe 2 ki te -2.
t=1
Nā, me whakaoti te whārite t=\frac{0±2}{-2} ina he tango te ±. Whakawehe -2 ki te -2.
t=-1 t=1
Kua oti te whārite te whakatau.