Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(1+m^{8}\right)\left(1-m^{8}\right)
Tuhia anō te 1-m^{16} hei 1^{2}-\left(-m^{8}\right)^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(m^{8}+1\right)\left(-m^{8}+1\right)
Whakaraupapatia anō ngā kīanga tau.
\left(1+m^{4}\right)\left(1-m^{4}\right)
Whakaarohia te -m^{8}+1. Tuhia anō te -m^{8}+1 hei 1^{2}-\left(-m^{4}\right)^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(m^{4}+1\right)\left(-m^{4}+1\right)
Whakaraupapatia anō ngā kīanga tau.
\left(1+m^{2}\right)\left(1-m^{2}\right)
Whakaarohia te -m^{4}+1. Tuhia anō te -m^{4}+1 hei 1^{2}-\left(-m^{2}\right)^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(m^{2}+1\right)\left(-m^{2}+1\right)
Whakaraupapatia anō ngā kīanga tau.
\left(1-m\right)\left(1+m\right)
Whakaarohia te -m^{2}+1. Tuhia anō te -m^{2}+1 hei 1^{2}-m^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-m+1\right)\left(m+1\right)
Whakaraupapatia anō ngā kīanga tau.
\left(-m+1\right)\left(m+1\right)\left(m^{2}+1\right)\left(m^{4}+1\right)\left(m^{8}+1\right)
Me tuhi anō te kīanga whakatauwehe katoa. Kāore i tauwehea ēnei pūrau i te mea kāhore ō rātou pūtake whakahau: m^{2}+1,m^{4}+1,m^{8}+1.