Aromātai
-12025
Tauwehe
-12025
Tohaina
Kua tāruatia ki te papatopenga
1-6\left(2005+\frac{2\left(-1\right)+2\left(0-1\right)+2\left(0-1\right)+2\left(0-1\right)}{12}\right)
Tangohia te 1 i te 0, ka -1.
1-6\left(2005+\frac{-2+2\left(0-1\right)+2\left(0-1\right)+2\left(0-1\right)}{12}\right)
Whakareatia te 2 ki te -1, ka -2.
1-6\left(2005+\frac{-2+2\left(-1\right)+2\left(0-1\right)+2\left(0-1\right)}{12}\right)
Tangohia te 1 i te 0, ka -1.
1-6\left(2005+\frac{-2-2+2\left(0-1\right)+2\left(0-1\right)}{12}\right)
Whakareatia te 2 ki te -1, ka -2.
1-6\left(2005+\frac{-4+2\left(0-1\right)+2\left(0-1\right)}{12}\right)
Tangohia te 2 i te -2, ka -4.
1-6\left(2005+\frac{-4+2\left(-1\right)+2\left(0-1\right)}{12}\right)
Tangohia te 1 i te 0, ka -1.
1-6\left(2005+\frac{-4-2+2\left(0-1\right)}{12}\right)
Whakareatia te 2 ki te -1, ka -2.
1-6\left(2005+\frac{-6+2\left(0-1\right)}{12}\right)
Tangohia te 2 i te -4, ka -6.
1-6\left(2005+\frac{-6+2\left(-1\right)}{12}\right)
Tangohia te 1 i te 0, ka -1.
1-6\left(2005+\frac{-6-2}{12}\right)
Whakareatia te 2 ki te -1, ka -2.
1-6\left(2005+\frac{-8}{12}\right)
Tangohia te 2 i te -6, ka -8.
1-6\left(2005-\frac{2}{3}\right)
Whakahekea te hautanga \frac{-8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
1-6\left(\frac{6015}{3}-\frac{2}{3}\right)
Me tahuri te 2005 ki te hautau \frac{6015}{3}.
1-6\times \frac{6015-2}{3}
Tā te mea he rite te tauraro o \frac{6015}{3} me \frac{2}{3}, me tango rāua mā te tango i ō raua taurunga.
1-6\times \frac{6013}{3}
Tangohia te 2 i te 6015, ka 6013.
1-\frac{6\times 6013}{3}
Tuhia te 6\times \frac{6013}{3} hei hautanga kotahi.
1-\frac{36078}{3}
Whakareatia te 6 ki te 6013, ka 36078.
1-12026
Whakawehea te 36078 ki te 3, kia riro ko 12026.
-12025
Tangohia te 12026 i te 1, ka -12025.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}