Whakaoti mō x
x=11
Graph
Tohaina
Kua tāruatia ki te papatopenga
1-5x+25=1-3\left(x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te x-5.
26-5x=1-3\left(x-1\right)
Tāpirihia te 1 ki te 25, ka 26.
26-5x=1-3x+3
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te x-1.
26-5x=4-3x
Tāpirihia te 1 ki te 3, ka 4.
26-5x+3x=4
Me tāpiri te 3x ki ngā taha e rua.
26-2x=4
Pahekotia te -5x me 3x, ka -2x.
-2x=4-26
Tangohia te 26 mai i ngā taha e rua.
-2x=-22
Tangohia te 26 i te 4, ka -22.
x=\frac{-22}{-2}
Whakawehea ngā taha e rua ki te -2.
x=11
Whakawehea te -22 ki te -2, kia riro ko 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}