Whakaoti mō x
x=\frac{1}{13}\approx 0.076923077
Graph
Tohaina
Kua tāruatia ki te papatopenga
1-15x+6=x-\left(x-2\right)\times 3
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 5x-2.
7-15x=x-\left(x-2\right)\times 3
Tāpirihia te 1 ki te 6, ka 7.
7-15x=x-\left(3x-6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 3.
7-15x=x-3x-\left(-6\right)
Hei kimi i te tauaro o 3x-6, kimihia te tauaro o ia taurangi.
7-15x=x-3x+6
Ko te tauaro o -6 ko 6.
7-15x=-2x+6
Pahekotia te x me -3x, ka -2x.
7-15x+2x=6
Me tāpiri te 2x ki ngā taha e rua.
7-13x=6
Pahekotia te -15x me 2x, ka -13x.
-13x=6-7
Tangohia te 7 mai i ngā taha e rua.
-13x=-1
Tangohia te 7 i te 6, ka -1.
x=\frac{-1}{-13}
Whakawehea ngā taha e rua ki te -13.
x=\frac{1}{13}
Ka taea te hautanga \frac{-1}{-13} te whakamāmā ki te \frac{1}{13} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}